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Abstract

The gravity equation, the most popular empirical tool in International Trade, is

usually estimated by the OLS or Poisson Pseudo-Maximum Likelihood (PPML), with

PPML being robust to the heteroskedasticity of an error term. We find that when

the trade elasticity is heterogeneous between country pairs, OLS and PPML estimates

have different interpretations: OLS estimates the average elasticity and PPML the

elasticity of the average. We show that most of the differences between the PPML and

OLS estimates are explained by the difference in the interpretation of the coefficients,

with only 8-30% of the differences explained by the heteroskedasticity channel.
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1 Introduction

In this paper, we focus on the behaviour of the techniques commonly used to estimate

constant elasticity models in the presence of unobserved heterogeneity. Wooldridge (2005)

shows that in the case that heterogeneity is independent of the covariates, the ordinary

least squares (OLS) estimator generates estimates that can be interpreted as an average

partial effect (APE). It follows then that the coefficient from a log-log OLS regression can

be interpreted as average elasticity in the case of coefficient heterogeneity.

While average elasticity is a meaningful object, depending on the question, researchers

might be interested in the elasticity of the average, the effect of a one per cent change in

one variable on the percentage change of the average value of another variable.1 In this

paper, we use the gravity equation, one of the most widely used empirical tools in the field

of international trade, to illustrate this difference. We show that the estimates obtained from

Poisson pseudo maximum likelihood (PPML), the most common econometric technique used

to estimate the gravity equation, can be interpreted as the elasticity of the average.2

Previously, all the differences between PPML and OLS coefficients in the gravity equation

have been wrongly attributed to the fact that, unlike PPML, OLS estimates are biased when

there is heteroskedasticity in an error term, a point that Santos Silva and Tenreyro (2006)

(henceforth SST) raised.

In this paper, we obtain evidence of heterogeneity in the effect of distance on trade

volume. Furthermore, we show, both theoretically and with Monte Carlo simulations, that

the presence of such heterogeneity causes bias in the estimation of the elasticity of the average

by the OLS.3 We introduce a weighted least squares (WLS) estimator and show that both

the PPML and WLS estimators are robust to heterogeneity. Still, unlike PPML and similar

1Consider the simple numerical example below. In a hypothetical country, there are only two individuals,
one rich and one poor. The rich individual has an income of $1,000,000, while the poor individual has an
income of only $1,000, and they face heterogeneous tax rates of 10% and 1%, respectively. The average tax
rate is calculated as 5.5%, but the total tax revenue is $100, 000 + $10 = $100, 010. The percentage of
total tax revenue in terms of total income is 100,010

1,001,000 = 9.991%, which can be interpreted as the “tax rate
on average”. The latter is the true effect of tax rates on the whole economy. The unweighted average of tax
rates differs from the true effect because it neglects the different weights that the two individuals have in the
economy and includes both of them in the computation of average elasticity with equal weights. To accurately
calculate the “tax rate on average”, the heterogeneous tax rates for the two individuals should be assigned
weights according to their share of the total income of the whole country: 10% ∗ 1,000,000

1,001,000 + 1% ∗ 1,000
1,001,000 =

9.991%. Similarly, countries of different sizes would have various degrees of impact on global trade volume
and should enter into the gravity equation computation with different weights. Otherwise, using the OLS
estimator to estimate the effects of a uniform decrease in trade costs on global trade volumes, such as a
worldwide reduction in gasoline prices, will lead to biased results.

2Ciani and Fisher (2019) make a related point and show that the interpretation of OLS and PPML
dif-in-dif estimates of a multiplicative model differ.

3In this paper, we focus on the estimation of the elasticity of the average; from this point of view, OLS
estimates are biased. Alternatively, we can say that OLS and PPML estimates have different interpretations.
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to OLS, WLS is not robust to the heteroskedasticity of an error term.

The fourth estimation procedure we consider is Gamma pseudo maximum likelihood

(GPML), which, similar to PPML, is consistent when the error term is heteroskedastic but

is often overlooked because of its potentially lower efficiency compared to PPML. We show

that, similar to OLS, the GPML estimates can be interpreted as the average elasticity, which

explains why GPML and PPML estimates often differ in practice.

A comparison of OLS, PPML, WLS, and GPML estimates allows us to decompose the

bias caused by using the OLS estimator with the log-linearized gravity equation into two

different sources — heteroskedasticity in the error term and heterogeneity across country

pairs — using PPML estimate as a benchmark. We document that the share of bias in

estimating the distance elasticity caused by heterogeneity is much larger than that caused

by heteroskedasticity. In particular, the heteroskedasticity bias accounts for approximately

8% of the total difference between OLS and PPML for the estimates of the average elasticity

and 30% for the estimates of the elasticity of the average.

We further contribute to the gravity literature and examine heterogeneous trade shocks

in the context of heterogeneous trade elasticities. Expectedly, the effect of a given shock

is contingent on which observations were treated respective intensity of such treatment.

We show that a standard PPML estimator can be interpreted as the average effect of a

uniform 1% decrease in trade costs on the world economy. We show that a PPML estimator

augmented with treatment intenstity weights, we call WPPML, consistently estimates the

effect of a given arbitrary trade shock.

While the topic of heterogeneous country-pair trade elasticity has rarely been discussed,

a few empirical studies examine the distance elasticity across countries. Fratianni and Kang

(2006) first use the log form of the gravity equation to estimate the distance elasticity of

the full sample, which yields a significant estimate of -1.17. Then, they test whether the

homogeneity assumption for different groups of countries holds with two tests: one for Or-

ganisation for Economic Co-operation and Development (OECD) countries and non-OECD

countries and the other for Christian and Islamic countries; both tests reject the null hypo-

thesis of distance homogeneity at the 1% level. They find that the distance elasticity is much

smaller for OECD member countries in absolute values than for nonmember countries. They

also find that the trading cost represented by the distance is the largest when trade occurs

between an Islamic and Christian country, with a distance elasticity of -1.47. Magerman

et al. (2016) summarize multiple studies on the distance and border effects in international

trade that perform sensitivity tests of the effects for various countries, regions, and periods

with different methods; the authors confirm the presence of heterogeneity in distance and

trade elasticities across different country pairs.
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A discussion of the mechanisms behind the heterogeneity of trade and distance elasticity

is beyond the scope of this paper. Still, several studies provide microfoundations of the

gravity equation with country-pair heterogeneity. Fieler (2011) first confirms that low-income

countries trade less than rich countries, both with each other and with the rest of the world:

in 2000, transactions to and from the 12 Western European countries accounted for 45%

of global trade, while the 57 African countries accounted for only 4.2%. This fact suggests

that pairs of large countries dominate global trade flows and, therefore, should be given

more weight in calculating the “elasticity of the average”. The author relaxes two of the

traditional assumptions of trade models that generate the gravity equation by allowing for

non-homothetic preferences and different quality of goods to be produced in high- and low-

income countries. With this new model, the author can explain the prevalence of large trade

flows among developed countries and small trade flows among developing countries. Novy

(2013) shows that the gravity equation based on the translog demand system, unlike the

standard CES gravity model, generates heterogeneous country-pairs trade elasticities. Bas et

al. (2017) make a related point but focus on the supply-side mechanism of the heterogeneity.

They introduce an extension of the Melitz (2003) model with the productivity distribution of

heterogeneous firms following log-normal instead of the commonly used Pareto distribution

and show that this assumption leads to bilateral-specific aggregate trade elasticity for each

country pair.

Our paper fits into a large strand of literature devoted to the estimation of the gravity

equation. A detailed review of this literature can be found in Head and Mayer (2014) and

Yotov et al. (2016). The former briefly considers the case of heterogeneous elasticities in

the Monte Carlo simulations and documents that OLS and GPML successfully estimate the

average elasticity, while PPML fails to do so, which is consistent with our findings. However,

the authors interpret the difference as the lack of robustness to misspecification and attribute

it to the different weights that PPML and GPML assign to various observations. Mayer et

al. (2019) make a similar point that PPML puts more weight on country pairs with larger

trade flows; they, nevertheless, do not consider the presence of country-pair heterogeneous

elasticity and do not discuss the difference in interpretation of the estimates.4

Finally, we contribute to the strand of literature devoted to the issues associated with

the aggregation of trade data. Costinot and Rodŕıguez-Clare (2014), Imbs and Mejean

(2015) Kehoe et al. (2017), and French (2017) address issues caused by between-industry

heterogeneity. Imbs and Mejean (2017) focus on the issues that arise when aggregating

sectoral elasticities in case these elasticities exhibit heterogeneity on a country level. Coughlin

4Eaton et al. (2012) also discuss that the differences between PPML and OLS can be driven by different
weights applied to trade flows.
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and Novy (2016) analyze the consequences of the spatial aggregation of trade data. Larch

et al. (2019) show that OLS and PPML estimates diverge when there is a large number of

small countries in the data. Arvis and Shepherd (2013) find that the sum of predicted and

actual trade flows are equal only for the PPML. Redding and Weinstein (2019) compare

aggregate and sectoral gravity equations and derive an exact Jensen’s inequality correction

term, which drives the difference between estimates from those two equations.

The rest of the paper is organized as follows: we discuss the methodology and theoretical

background in Section 2. In Section 3, we present the results of Monte Carlo simulations.

In Section 4, we employ the gravity equation to prove the existence of country-pair hetero-

geneous elasticities and decompose the differences between OLS and PPML estimates. In

Section 5, we conclude the paper.

2 Methodology

Heterogeneity

In this paper, we focus on the case of unobserved heterogeneity. The reason is that if

the variation in observed independent variables drives the heterogeneity, this issue can be

addressed by including the interaction term between the variable of interest and the variable

that causes heterogeneity. If the unobserved variable is correlated with other covariates,

then a suitable proxy variable can address this issue, while the rest of the procedure would

remain the same.

We rely on the approach by Wooldridge (2005) to handle the unobserved heterogeneity

and incorporate it into a constant elasticity model. A general formulation is

y = β0x
βxqγv,

where y and x are the dependent and control variables, respectively: q is an unob-

served variable; and v is an error term that satisfies the unit conditional mean assumption:

E (v|x, q) = 1.5

The log-linearized version of this expression is then:

log y = β0 + β log x+ γq log x+ log v

The partial effect of log x on E (log y|x, q) is then

5Here we focus on the heterogeneity driven bias, so, for now, we assume that the error term is homod-
eskedastic.

4



∂E (log y| log x, q)

∂ log x
= (β + γq) .

As the unobserved term q differs from observation to observation, this partial effect is

nonconstant, and we interpret it as the observation-specific elasticity. The formulation above

can be interpreted as a random coefficient model with the observation-specific elasticity

θi ≡ β + γq; to simplify the notation from now on, we will rely on this interpretation of the

unobserved heterogeneity model.

Wooldridge (2005) shows that in the case that q is independent of x, E (q) = µ, OLS

estimates the average partial effect (APE) of log x on E (log y|x, q), which is equal to β+γµ.

This estimate can be interpreted as the average elasticity, as it averages out the partial effects.

Because of Jensen’s inequality, however, the average elasticity and elasticity of the average

are not equal. If there are N observations with values of yi and corresponding elasticities θi,

then the average elasticity is simply
∑N

i=1 θi
N

. The elasticity of the average can be computed as

a weighted average of elasticities with weights equal to the share of yi in
∑N

i=1 yi:
∑N

i=1 θiyi∑N
i=1 yi

.6

It follows that to calculate the elasticity of the average, we do not need to know the values

of unobserved variable q, the weights are proportional to the observed values of y, and thus,

an estimator that applies these weights can be interpreted as the elasticity of the average.

The gravity equation and heteroskedastic errors

In this section, we use the “naive form” of the gravity equation in Head and Mayer (2014) to

be consistent with the constant-elasticity models in SST and constrain the trade elasticity

to be distance elasticity:7

Yij =
GDP β1

i ∗GDP
β2
j

Distanceθij
εij (1)

where Yij is the trade flow between country i and j, Distanceij stands for bilateral distance,

and εij is the error term.

Taking logs on both sides of the equation yields the following:

log Yij = β1 log gdpi + β2 log gdpj + θ log distanceij + log εij (2)

where θ < 0 is the trade elasticity.8

6Note that this Jensen’s inequality differs from one described in SST. In the general case, with both
heteroskedasticity and heterogeneity, there are two sources of bias driven by different Jensen’s inequalities.

7In this paper, we follow SST as close as possible, to model heterogeneous trade elasticities, however, we
have to deviate and use a more complex data generating process.

8The multiplicative error term εij used in our model is derived from the “true” additive error term
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To obtain consistent estimates of the coefficients in Equation 1 using the log-linearized

form of Equation 2 by OLS, it is necessary for E[log εij|X] to be constant. According to

SST, however, εij is generally heteroskedastic, so running a simple OLS regression of log Yij

on X leads to inconsistent estimates of θ. Moreover, when there is heteroskedasticity in the

error term, the log transformation of the gravity equation potentially leads to the violation

of the exogeneity assumption and biases the OLS estimator. From Equation 2:

ˆlog εij = log Yij − ˆlog Yij

where ˆlog Yij = Xβ̂ is the predicted log of bilateral trade volume. Even though the exogen-

eity assumption Cov(εij,X) = 0 is satisfied in Equation 2, with heteroskedasticity in εij,

Cov(log εij,X) does not necessarily equal 0. Thus, the OLS estimator is biased.

Country-pair heterogeneity

To focus on estimating the aggregate elasticity that reflects the effect of a uniform change in

the trade costs on bilateral trade volumes, i.e., the elasticity the of average, we incorporate

heterogeneous country-pair trade elasticities into Equation 2:

log Yij = β1 log gdpi + β2 log gdpj + θij log distanceij + log εij (3)

In the case that the error term is homoskedastic, the OLS estimator θ̂ is a consistent estimator

for APE: θ
APE

= E(θij) given that the assumption of exogeneity with heterogeneity is

satisfied: E(θij | log distanceij) = E(θij). This estimator was defined previously as the

“average trade elasticity”. However, using the OLS to estimate the “elasticity of the average”

leads to bias with heterogeneity because θ
APE

assigns equal weight to every individual θij,

while different trading country pairs have a differential impact on the world’s aggregate trade

flows.

A natural solution candidate to the weighting problem is the WLS estimator. The share

of the bilateral trade flows between countries i and j over the global trade flows, denoted by
Yij
Y

, can be used as the weights. The formal justification of this method follows the solutions

to the endogenous stratified sampling issue proposed by Hausman and Wise (1981), where

they use the Gary Income Maintenance Experiment as an example to show the extent of

selection bias due to endogenous stratified sampling and demonstrate that the bias can be

corrected by both the maximum likelihood estimator (MLE) and WLS estimator.

In the context of this study, trade elasticity can be interpreted as the effect of trade

ηij = Yij − Ŷij where εij = 1 +
ηij

exp(X∗β) and E[εij |X] = 1.
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liberalization on the representative dollar of world trade flows. If every country pair is

treated as a stratum, then the probability of a representative dollar falling in any stratum is
1
M

, where M is the number of country pairs. The share of the bilateral trade flows between

a country pair is
Yij
Y

. The dollars from a country pair are underrepresented when
Yij
Y
> 1

M
.

The relative probability of a particular dollar falling in a stratum is given by 1
M
/
Yij
Y

= Y
M∗Yij .

Therefore, with normalization, the weight used in this study is
Yij
Y

.9

We follow Hausman and Wise (1981) by using weights that include an error term; to

ensure that endogenous weights are not driving our results, we propose an alternative 2-

stage procedure, which we refer as to feasible weighted least squares (FWLS), where in the

first stage, we run an OLS regression and generate predicted trade flows. In the second

stage, we run a WLS regression with the fitted values of trade flows from the previous stage

as weights. We also use PPML and GPML estimators in this study following the method

discussed by SST.

Table 1 below summarises the empirical moment conditions for each of the estimators

discussed in this study.

Table 1
Empirical Moment Conditions

OLS
∑

i,j∈ΩXij

(
log Yij − ˆlog Yij

)
= 0 GPML

∑
i,j∈Ω Xij

(
Yij

Ŷij
− 1
)

= 0

WLS
∑

i,j∈ΩXij

(
log Yij − ˆlog Yij

)
Yij = 0 PPML

∑
i,j∈Ω Xij

(
Yij − Ŷij

)
= 0

FWLS
∑

i,j∈ΩXij

(
log Yij − ˆlog Yij

)
Ŷij = 0

Note: Ŷij and ˆlog Yij are the predicted bilateral and log of trade volume correspondingly. Xij

is the vector of covariates for the country pair ij. Ω is the set of all country pairs ij.

From these conditions, one can see that OLS involves log deviations of Yij from its pre-

dicted value. Since percent deviations are approximately equal to log deviations, multiplying

the log deviations by actual trade volumes leads to a result close to the level deviations, im-

plied by the WLS first-order condition.

The moment condition of PPML indicates that it also involves the level deviations of

Yij from its predicted value; hence, similar to WLS, it addresses the heterogeneity issue.

Conversely, the moment condition of GPML relies on the per cent deviations of Yij from

its predicted value, so we can expect that the GPML and OLS estimator will yield similar

estimates.

9Mayer et al. (2019) estimate the gravity equation and apply weights proportional to the value of trade
costs, which is similar to our WLS estimator. They, however, do not discuss the interpretation of the
estimates and the presence of country-pair heterogeneous elasticities.
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3 Simulations

In this section, we simulate bilateral trade flows under the assumptions of two types of

countries and heterogeneous trade elasticities across country pairs. The simulation results

indicate that using the OLS estimator under such conditions yields biased estimates for the

parameter of interest (the elasticity of the average) and that the application of the PPML

and WLS estimators corrects this bias.

Data generating process

We incorporate the heterogeneous elasticities into SST’s specifications of heteroskedastic

errors in the data generating process (DGP):

Yij = exp(β1 log gdpi + β2 log gdpj + θij log distanceij) ∗ εij (4)

where εij is a log-normal random variable with mean 1 and variance σ2.

Following SST, we consider the following three specifications of σ2 to assess the perform-

ance of different estimators under different patterns of heteroskedasticity.10

Case 1: σ2 = exp(log Yij)
−2; V [Yij|X] = 1.

Case 2: σ2 = exp(log Yij)
−1; V [Yij|X] = exp(log Yij).

Case 3: σ2 = 1; V [Yij|X] = exp(log Yij)
2.

We consider a simple economy in which there are two types of countries, large and small,

with GDPL = 100 and GDPS = 10, respectively. The total number of countries in the

economy is N = 100. The effect of GDP on bilateral trade flows is assumed to be 1, i.e.,

β1 = β2 = 1. The distance between a country pair is randomly generated from the uniform

distribution U(2, 3), and a counterfactual case with a 1% increase in each pairwise distance

is also generated to reflect the changes in trade costs.

In terms of heterogeneity, the value of trade elasticity between two countries θij can be

either −1 or −0.5. We first examine the scenario where Pr[θij = −1] = Pr[θij = −0.5] = 0.5.

This satisfies the exogeneity with heterogeneity assumption in Wooldridge (2005) that the

unobserved heterogeneity is independent of the structural covariates. Then we rely on the

findings of Fieler (2011) and assume that the trade elasticity between two large countries

is θLL = −0.5 and that the elasticity for the pairs of two small or one small and one

large country is θSS = θSL = −1. Our results, however, do not depend on the source of

heterogeneity and in general, we are agnostic about it.11

10Due to the differences between our DGP and that in SST, the fourth case of heteroskedasticity is
omitted.

11While GDPs are observed and controlled for by fixed effects, its effect on distance elasticity is of bilateral
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We start by applying the DGP when all countries are small, i.e., NL = 0, and increase

the number of large countries in the economy by one after each iteration until NL = 100. For

each of the K = 101 cases, we run S = 80 simulations with new draws of errors and bilateral

distances. For each simulation s ∈ S, the elasticity of average is calculated as below:

δs =
1

N2

N∑
i

N∑
j


∑N

i

∑N
j Y ′ij−

∑N
i

∑N
j Yij∑N

i

∑N
j Yij

distance′ij−distanceij
distanceij

 =
1

N2

N∑
i

N∑
j


∑N

i

∑N
j (Y ′ij−Yij)∑N

i

∑N
j Yij

distance′ij−distanceij
distanceij

 (5)

where distance′ij is the counterfactual distance with a 1% increase from distanceij and Y ′ij is

the corresponding trade flows generated from Equation (4). The numerator of Equation (5)

is the percentage change in average trade volumes, and the denominator is the percentage

change in bilateral distance. And the average elasticity is calculated as follows:

δ′s =
1

N2

N∑
i

N∑
j

 Y ′ij−Yij
Yij

distance′ij−distanceij
distanceij

 (6)

which is the average ratio of the percentage change in trade volumes and the percentage

change in distance.

Heterogeneous Treatment

In the previous section we define the elasticity of average as the average percentage response

of trade flows to a uniform 1% change in trade costs (distances). Although such a shock

represents a particular case of a generic trade shock, our emphasis is placed on it due to its

explicit interpretability and its immediate association with a PPML estimator.

Note, hovewer, that in the presence of heterogeneous effects, non-uniform treatment

would have different effect on the elasticity of the average depending on which observations

are treated and with what intensity.12. In this section, we derive the expression for the

elasticity of the average in case of an arbitrary treatment and show that it can be estimated

by a WPPML estimator with weights proportionate to treatment intensity.

Average elasticity is calculated as

nature and is unobserved. We chose the distance elasticity to depend on GDP to generate a link between
the size of trade flows and the elasticity heterogeneity. In the absence of such a link, Jensen’s inequality
becomes equality, and the average elasticity becomes equal to the elasticity of the average.

12It is true even for linear models with heterogenous coefficients.
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δ′s =
1

N2

N∑
i

N∑
j

 Y ′ij−Yij
Yij

d′ij−dij
dij

 =
1

N2

N∑
i

N∑
j

δij (7)

which is the average ratio of the percentage change in trade volumes and the percentage

change in distance. δij ≡
Y ′ij−Yij

Yij

d′
ij
−dij

dij

is the pair-specific elasticity.

The elasticity of the average is the ratio of total percentage change in trade flows and

average percentage change in distances:

δs =

∑N
i

∑N
j Y ′ij−

∑N
i

∑N
j Yij∑N

i

∑N
j Yij∑N

i

∑N
j

d′ij−dij
dij

/N2
=

∑N
i

∑N
j (Y ′ij−Yij)∑N

i

∑N
j Yij∑N

i

∑N
j

d′ij−dij
dij

/N2
=

∑N
i

∑N
j

(Y ′ij−Yij)

Yij

Yij∑N
i

∑N
j Yij∑N

i

∑N
j

d′ij−dij
dij

/N2
(8)

=
N∑
i

N∑
j

(Y ′ij−Yij)

Yij

Yij∑N
i

∑N
j Yij∑N

i

∑N
j

d′ij−dij
dij

/N2
=

N∑
i

N∑
j

 (Y ′ij−Yij)

Yij

d′ij−dij
dij

Yij∑N
i

∑N
j Yij

d′ij−dij
dij∑N

i

∑N
j

d′ij−dij
dij

/N2

 (9)

=
N∑
i

N∑
j

(
δij

Yij∑N
i

∑N
j Yij

sij

)
=

∑N
i

∑N
j δijYijsij

N2
/

∑N
i

∑N
j Yij

N2
, (10)

where sij ≡
d′ij−dij

dij∑N
i

∑N
j

d′
ij
−dij

dij
/N2

and s ≡ {sij}i,j∈[1,N ] are the weights and the vector of treat-

ment intensity. When all the weights are equal, (sij = skl∀i, j, k, l ∈ [1, N ]), it corresponds

to the case of a uniform decrease in all the trade barriers d. Note that s is not random and

instead represents the counterfactual of interest. Naturally, in the presence of heterogeneity,

the average elasticity (average responsiveness of the dependent variable to treatment) will

depend on the distribution of treatment. For example, if the counterfactual of interest is the

decrease in trade barriers between countries 1 and 2 with all other trade barriers remaining

unchanged (d′ij 6= dij if i = 1, j = 2 and d′ij = dij if i 6= 1, j 6= 2), the true elasticity of such

a treatment will be equal to δ12.

Now, for a given treatment vector of interest s, a policymaker can properly estimate

the average elasticity by assigning corresponding weights to the relevant observations. In

particular, if only a subset of observations are being treated, untreated observations should

be omitted from the estimation (otherwise, values of δij irrelevant to a given treatment

would contaminate the true elasticity of average δs).
13. More generally, if some observations

receive larger treatment than others (say, trade costs between Germany and Italy decreased

13Consider, for example, the case when there are two subpopulations with different true values of trade
elasticity δ1 and δ2. Then, if only the first group was treated, the responsiveness of the group to this
treatment will correspond to δ1, while values of δ2 are completely irrelevant.
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by 99% and trade costs between France and Poland decreased by 0.01%), the weight of their

elasticity in calculation of the total elasticity should be higher.

Note that unlike size weights
Yij∑N

i

∑N
j Yij

, which appear because we deal with a non-linear

model, treatment weights would appear in any model, including linear, with heterogeneous

coefficients. Now, the regular PPML estimator considers the baseline case of a uniform

treatment s = 1; if a policymaker is interested in the outcomes of any other treatment

vector, a weighted PPML (WPPML) can be applied. Finally, there exists such a treatment

vector such that the average elasticity and elasticity of the average are identical; it happens

when larger observations (country pairs) receive proportionally lower treatment and thus

two weights (size and treatment) cancel out.

Interestingly, average elasticity δ′s does not depend on the treatment vector, because it is

a simple arithmetic average of heterogenous elasticities δij and does not account the relative

size and importance of different observations or whether these observations were treated or

not (which is another advantage of the elasticity of the average).

Finally, the last expression for δs is the empirical counterpart of E[Y θs|s]
E[Y ]

. In the case of

a uniform treatment, s = 1, this expression becomes E[Y θ]

E[Y ]
, corresponding to the moment

condition of the regular (unweighted) PPML estimator.

Estimates

In this section, we investigate the behavior of the two distinct parameters of interest, the

elasticity of average and the average elasticity, and the performance of different estimators for

models with heterogeneous country pairs in the simulated economy and the above-mentioned

heteroskedastic errors. The WLS estimator is applied with the share of every country pair

in total world trade Yij/Y as weights, where Y is the total trade volumes across all country

pairs. For the FWLS estimator, the share of predicted trade flows Ŷij/Y is used as weights.

The GPML and PPML estimators use Yij as the dependent variable and the log of GDPs

and log of bilateral distance as independent variables, while all other estimators use log Yij

as the dependent variable.

To provide a clearer picture of the differences between estimators, We express the bias

of using different estimators as the percentage difference between the estimates and the

elasticity of the average as follows:

biask = 1− θ̂k
δk

(11)

where k ∈ K is the number of large countries in the economy, θ̂k is the estimated result when

11



there are k large countries in the economy. The elasticity of the average in the kth case, δk,

is calculated as the average of all the δs (s = 1, ... 80).

We start by focusing on the case where unobserved heterogeneity is assumed to be inde-

pendent of the country sizes, so each country pair will have an equal opportunity of having a

trade elasticity of −1 or −0.5. Figure 1 displays the behaviour of all estimators of the trade

elasticity. As a reference, we also include the elasticity of the average of each heterogeneity

case, δk, and the average elasticity, δ′k
14, in the figures of estimates.

The stark difference between the values of the elasticity of the average, δk, and the average

elasticity, δ′k, is straightforward from the left panel graphs of Figure 1. Consequently, the

behaviour of the selected estimators differentiates from each other and centres around the

two distinctive concepts. Firstly, PPML, WLS and FWLS have similar patterns as δk, while

GPML and OLS have similar patterns as δ′k. This is consistent with our grouping of the

estimators’ empirical moment conditions in Table 1. In terms of estimated values, PPML

and GPML estimates are close to δk, while OLS and FWLS estimates are close to δ′k, and

WLS estimates are close to neither.

The distinction between δk and δ′k is due to the existence of country-pair heterogeneity

and heteroskedasticity in the error term. SST shows that both PPML and GPML estimators

address the issue of heteroskedastic errors, so the difference between these two estimators

results from the fact that PPML assigns different weights to country pairs in the sample while

GPML does not. When country-pair heterogeneity is randomly determined, the weighting

does not seem to be crucial, as the biases from these two estimators are almost negligible

when Case 1 and 2 types of heteroskedastic error are present (Figure 1b and 1d). On the

other hand, OLS, WLS and FWLS estimators all suffer from having heteroskedastic errors.

While WLS and FWLS estimators also attempt to address the country-pair heterogeneity

issue by assigning different weights to observations, they all result in notable biases from the

parameter of interest, δk.

As discussed by SST, Case 3 is a special case that the log linear model corrects the

heteroskedasticity in the data and that the GPML is the optimal PML estimator in this

case. Therefore, in Figure 1f, the GPML estimator still has a negligible bias, while the bias

of the PPML estimator, in this case, is much larger.

Next, we follow Fieler (2011) and introduce the dependence of heterogeneity on country

size, where trade elasticities between a pair of large countries will be larger in absolute value

than those between country pairs involving a small country. Before analyzing the main

estimated results, we present a summary table below (Table 2) for the benchmark results

where no country-pair heterogeneity is considered, and all countries are small. Recall that

14This is calculated as the average of all θs over s ∈ S for each k ∈ K .
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Figure 1. Estimates and biases of OLS, WSL, GPML and PPML (Independent Heterogen-
eity)

(a) Estimates Case 1 (b) Biases Case 1

(c) Estimates Case 2 (d) Biases Case 2

(e) Estimates Case 3 (f) Biases Case 3

Note: The horizontal axis shows the number of large countries in the economy, and the vertical axis is
the estimated result. Cases 1, 2 and 3 heteroskedastic errors follow the same specification as in Section
3.1. Trade elasticity (elasticity of average) is calculated as the change in level trade volume with a 1%
increase in bilateral distance and is shown in red. Average elasticity is calculated as the unweighted
average of the true θ’s in the DGP and is shown in orange. Biases are calculated using Equation 5,
which are the percentage difference between the elasticity of average and the estimated coefficient for
different estimators. The 95% confidence intervals of the estimated biases are included as dashed lines.
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Table 2
Sample estimates and biases

NL = 0
Case 1 Case 2 Case 3

Estimate Bias Estimate Bias Estimate Bias

OLS
-0.99997

(-1.00010, -0.99980)
-0.000067

(-0.000230, 0.000097)
-1.00340

(-1.00500, -1.00170)
-0.003456

(-0.005137, -0.001775)
-0.99043

(-1.00500, -0.97584)
0.009467

(-0.005128, 0.024062)

GPML
-0.99988

(-1.00000, -0.99972)
0.000016

(-0.000148, 0.000181)
-0.99883

(-1.00050, -0.99715)
0.001069

(-0.000610, 0.002479)
-0.98833

(-1.00570, -0.97094)
0.011568

(-0.005824, 0.028959)

PPML
-0.99989

(-1.00000, -0.99973)
0.000012

(-0.000145, 0.000169)
-0.99886

(-1.00050, -0.99724)
0.001038

(-0.000586, 0.002661)
-0.98788

(1.00470, -0.97110)
0.012024

(-0.004754, 0.028802)

WLS
-0.99981

(-0.99996, -0.99965)
0.000095

(-0.000062, 0.000252)
-0.99436

(-0.99599, -0.99273)
0.005541

(0.003913, 0.007170)
-0.98379

(-1.01020, -0.95735)
0.016107

(-0.010338, 0.042553)

FWLS
-0.99997

(-1.00010, -0.99981)
-0.000071

(-0.000227, 0.000086)
-1.00340

(-1.00500, -1.00170)
-0.003466

(-0.005093, -0.001839)
-0.99047

(-1.00480, -0.97617)
0.009429

(-0.0004876, 0.023735)
NL = 50

Case 1 Case 2 Case 3
Estimate Bias Estimate Bias Estimate Bias

OLS
-0.88112

(-0.88294, -0.87931)
-0.567010

(-0.570290, -0.563730)
-0.88177

(-0.88369, -0.87985)
-0.568160

(-0.571610, -0.564710)
-0.87162

(-0.88598, -0.85726)
-0.549710

(-0.575180, -0.524240)

GPML
-0.86736

(-0.86918, -0.86554)
-0.542540

(-0.545820, -0.539250)
-0.86653

(-0.86852, -0.86455)
-0.541060

(-0.544630, -0.537490)
-0.85408

(-0.87129, -0.83686)
-0.518510

(-0.549030, -0.487980)

PPML
-0.56238

(-0.56264, -0.56212)
-0.000141

(-0.000616, 0.000333)
-0.56220

(-0.56254, -0.56186)
0.000176

(-0.000433, 0.000784)
-0.53943

(-0.56987, -0.50889)
0.040914

(-0.013219, 0.095047)

WLS
-0.56130

(-0.56157, -0.56104)
0.001769

(0.001284,0.002253)
-0.56101

(-0.56135, -0.56067)
0.002284

(0.001670, 0.002897)
-0.53531

(-0.58083, -0.48978)
-0.032658

(-0.032658,0.129260)

FWLS
-0.57515

(-0.57545, -0.57485)
-0.022858

(-0.023411, -0.22305)
-0.57494

(-0.57531, -0.57457)
-0.002483

(-0.023143, -0.021824)
-0.55603

(-0.58076, -0.53130)
0.011342

(-0.032656, -0.055340)

Note: This table contains both the case with no country-pair heterogeneity and the heterogeneous case
with the number of large and small countries both equal to 50. NL is the number of large countries in
the economy. Case 1, 2, and 3 heteroskedasticity follow the corresponding specifications in Section 3.1.
Biases are calculated using equation 11. The estimated 95% confidence intervals are included in brackets.

we have θLL = −0.5 and θSS = θSL = −1. Under these conditions, according to SST, we

could expect good performance from the PPML estimator across all three specifications of

heteroskedasticity, while the OLS estimator only performs well under Case 3. As shown

in Table 2, under Case 1 and 2, PPML gives an estimate closer to -1, the universal trade

elasticity, than the OLS estimator with smaller standard errors. The reverse is true under

Case 3, consistent with SST’s findings under their DGP.

Then we introduce country-pair heterogeneity into the benchmark by making half of the

countries large. As shown in the second half of Table 2, the OLS estimates are drastically

different from the PPML ones. We also include WLS estimates to show the similarity

between the estimated results using WLS and PPML, which is consistent with the discussion

in Section 3. The estimated results from FWLS are reasonably close to those of WLS,

indicating that endogenous weights do not significantly impact our results. Furthermore,

while GPML performs well under both specifications of heteroskedasticity when there are

no large countries in the economy, it fails to address the issue of heterogeneity, resulting in

similar results as OLS and much larger biases than PPML in estimating the elasticity of the

average.

Figure 2 displays the behaviour of all estimators of the trade elasticity under this circum-

stance together with the aforementioned heteroskedasticity. With the increasing number of

large countries in the economy, we should expect an increase in the average of estimated

elasticities. As before, we also include the elasticity of the average of each heterogeneity
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case, δk, and the average elasticity, δ′k, in the figures of estimates.

It is, again, clear from the left panel graphs that OLS and GPML estimators behave

differently than other estimators and the elasticity of the average, δk, but are in close align-

ment with the average elasticity, δ′k. In general, the PPML, WLS, and FWLS estimators

outperform OLS and GPML, with both smaller deviations from δk and similar behaviour as

the number of large countries in the economy k increases. The differences between the two

categories of estimators are significant when there is more heterogeneity in the economy, i.e.,

the number of large and small countries are close to each other. In contrast, in the case of

little heterogeneity in the economy, the estimates are not drastically different. These two

points indicate that in our simulations, country-pair heterogeneity dependent on country

size generates a larger share of bias than heteroskedastic errors, which confirms our point

that the PPML, WLS, and FWLS estimators are capable of addressing heterogeneity-related

issues better than OLS and GPML.

Figures 2b, 2d, and 2f represent biases for Cases 1, 2 and 3, respectively. We can see

that despite the distinct patterns of heteroskedasticity in the error term, the effect of this

distinction is trivial on both the shape of the graph and the scale of the bias. Here, the bias

caused by country-pair heterogeneity dependent on country size outweighs the bias caused

by heteroskedastic errors, so unlike the results in Figure 1, it is crucial to assign proper

weights to observations if we want to estimate the elasticity of average, δk, correctly. 15

The results in Table 2 are also presented in these graphs. In Figure 2a, when the number

of large countries k = 0 (no large countries) and k = 100 (no small countries), i.e., no het-

erogeneity, the PPML estimates are the closest to the elasticity of the average δ. Conversely,

the OLS estimator performs best without heterogeneity in Case 3 (Figure 2e).

The dashed lines show the narrow 95% confidence interval of the biases under each case,

indicating that the differences across estimators are statistically significant.

4 Gravity equation

In this section, we apply different estimation techniques to gravity data. We document

not only the existence of country-pair heterogeneity but also decompose the bias of OLS

estimates by heterogeneity and heteroskedasticity channels.

To make our results comparable with those in SST, we employ the same data and follow

their specification by including distance and indicator variables for remoteness, common

15Note that the estimates and biases are similar for the cases of NL = 0 and NL = 1 because in both cases,
there are no country pairs where both countries are large, hence in both cases the country-pair elasticities
are uniform.
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Figure 2. Estimates and biases of OLS, WSL, GPML and PPML

(a) Estimates Case 1 (b) Biases Case 1

(c) Estimates Case 2 (d) Biases Case 2

(e) Estimates Case 3 (f) Biases Case 3

Note: The horizontal axis shows the number of large countries in the economy, and the vertical axis is
the estimated result. Cases 1, 2 and 3 heteroskedastic errors follow the same specification as in Section
3.1. Trade elasticity (elasticity of average) is calculated as the change in level trade volume with a 1%
increase in bilateral distance and is shown in red. Average elasticity is calculated as the unweighted
average of the true θ’s in the DGP and is shown in orange. Biases are calculated using Equation 5,
which are the percentage difference between the elasticity of average and the estimated coefficient for
different estimators. The 95% confidence intervals of the estimated biases are included as dashed lines.
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language, colonial heritage, and preferential trade agreements in the model. We replicate

the findings of SST’s Table 5 of the gravity equation regression on OLS, PPML and GPML

estimators, controlling for multilateral resistance terms with importer and exporter fixed

effects, and provide the estimated results of WLS and FWLS estimators. Table 3 reports

the results of all five estimators and corresponding standard errors.

Table 3
Gravity equation

OLS WLS FWLS PPML
(With ZTF)

PPML
(No ZTF)

GPML
(With ZTF)

GPML
(No ZTF)

Distance -1.347***
(0.031)

-0.722***
(0.049)

-0.685***
(0.038)

-0.750***
(0.041)

-0.770***
(0.049)

-1.933***
(0.055)

-1.173***
(0.029)

Common
Border

0.174
(0.130)

0.395***
(0.080)

0.141**
(0.057)

0.369***
(0.091)

0.352***
(0.090)

-0.457**
(0.230)

0.326***
(0.117)

Common
Language

0.406***
(0.068)

0.419***
(0.076)

0.558***
(0.052)

0.383***
(0.093)

0.418***
(0.094)

0.681
(0.097)

0.416***
(0.065)

Colonial
Ties

0.666***
(0.070)

-0.047
(0.103)

0.019
(0.098)

0.079
(0.134)

0.038
(0.134)

0.807***
(0.100)

0.510***
(0.067)

FTA 0.310***
(0.098)

0.424***
(0.080)

0.585***
(0.085)

0.376***
(0.077)

0.374***
(0.077)

1.472***
(0.257)

0.579***
(0.085)

Exporter
FE

Y Y Y Y Y Y Y

Importer
FE

Y Y Y Y Y Y Y

N 9,613 9,613 9,613 18,360 9,613 18,360 9,613

Note: The OLS, WLS, FWLS, PPML, and GPML columns represent the estimates of the main regression
estimated by the ordinary least squares, weighted least squares, fitted weighted least squares, Poisson
pseudo-maximum likelihood, and gamma pseudo-maximum likelihood, respectively. Zero trade flows are
excluded from the specifications of OLS, WLS, and FWLS. For PPML and GPML, the results from both
cases of excluding and including zero trade flows in the main regression are reported. Standard errors
are in parentheses. N stands for the number of observations. Details are in the main text.

First, we present the evidence obtained from the gravity dataset that country-pair elast-

icities are not homogeneous. Naturally, we cannot establish a link between the unobserved

variable and distance elasticity; trade volumes, conversely, are observed. If the OLS estim-

ates of the distance elasticity do not vary much depending on how large trade flows are, then

there will not be a significant difference between the average elasticity and the elasticity of

the average. The reason is that trade shares serve as weights while computing the elasticity

of the average.

After sorting the bilateral trade flows into ascending order, we run OLS regression mul-

tiple times, dropping the 10 smallest trade flows in the sample at each iteration. The estim-

ated θ̂ and corresponding 95% confidence interval are saved and plotted in Figure 3a. This
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is equivalent to running regressions on different subsamples containing various levels of trade

flows. As the number of iterations increases, the weight of large trade volumes increases as

well. The graph demonstrates an unambiguously positive relationship between estimated θ̂

and larger average trade flows in the subsamples. Compared to the results generated from

the same procedure but with 10 trade flows being randomly dropped at every iteration on

Figure 3b, it is clear that a positive relationship between the estimated θ̂ and larger trade

volumes in the subsamples provides evidence of country-pair heterogeneity.16 Note that we

included exporter and importer fixed effects and standard controls for country pairs, so the

results in Figures 3a and 3b are driven by unobserved heterogeneity.17

As shown in the previous section, the WLS, FWLS, and PPML estimators are robust to

the presence of country-pair heterogeneity when estimating the “elasticity of the average” in

the simulated economy, and the GPML estimator yields similar results as the OLS estimator,

which estimates the average elasticity. Now we show that these methods lead to similar

results with the same gravity dataset. We still drop the 10 smallest trade values on each

iteration but now apply the WLS, FWLS, PPML, and GPML estimators to the regression

equation. For WLS, the weights are calculated as the share of each observation’s bilateral

trade flows on the global total trade flows. For FWLS, the weights are calculated as the

share of each observation’s predicted bilateral trade flows on the sum of total predicted trade

flows.

Compared to Figure 3a, the estimated θ̂ from WLS, FWLS, and PPML illustrated in

Figure 3c do not depend on the choice of subsamples except for the case when the sample size

becomes very small. The overall constant estimates show that these estimators are robust to

country-pair heterogeneity. The three estimators exhibit a similar pattern, indicating that

all three of them are capable of addressing the heterogeneity in the country-pair elasticity

problem, consistent with our findings in Section 3. Moreover, the estimated θ̂ from GPML

exhibits an increasing trend as the average trade flows in the subsamples grow larger. This

result is also consistent with our findings in the previous section that GPML and OLS would

yield similar results.

With PPML as the benchmark estimator, we can perform a decomposition to show

the proportion of bias caused by heterogeneity and heteroskedasticity. The total bias is

calculated as the difference between the OLS estimates and PPML estimates. According to

our previous results, however, there are two alternative ways to decompose the total bias.

With one method, we calculate the bias caused by heterogeneity as the difference between

16The standard errors for the estimates with smaller subsamples in Figure 3b are much larger because in
small subsamples the number of countries increases relative to the number of observations, and consequently
more fixed effects are included leading to higher standard errors of θ̂.

17Our findings are consistent with the study Yotov (2012) and Larch et al. (2019).
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Figure 3. Evidence of heterogeneity

(a) Increasing trade volumes in subsamples - OLS (b) Random subsamples - OLS

(c) Comparison across all estimators

Note: This figure presents evidence of unobserved heterogeneity in country-pair elasticity. In panel (a),
at each iteration, we drop 10 observations with the smallest corresponding volume of trade, while in
panel (b), we drop 10 random observations. In panel (c), we sort the data into ascending order and
show the OLS, WLS, FWLS, GPML, and PPML estimates on different subsamples. There are 9,613
observations in the full sample. The last iteration has 623 observations.

the OLS estimates and WLS estimates, and the bias caused by heteroskedasticity is the

difference between the WLS estimates and PPML estimates. With another method, we

calculate the bias caused by heterogeneity as the difference between the GPML estimates

and PPML estimates, and the bias caused by heteroskedasticity is the difference between the

OLS estimates and GPML estimates. Table 4 summarizes the estimated θ̂, the corresponding

standard errors, and the bias decomposition results.

The difference between the two methods is that the former evaluates the size of the

heteroskedasticity bias when estimating the average elasticity, while the latter evaluates

it for the estimation of the elasticity of the average. Not surprisingly, the sizes of biases

obtained by these two methods differ — as evident from our Monte Carlo simulations, the
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size and the sign of the heteroskedasticity bias depend on the pattern of heteroskedasticity

and the degree of heterogeneity.

Table 4 indicates that bias caused by heteroskedasticity accounts for a smaller share

of the total bias, while heterogeneity is the primary driver of the differences between the

estimators.18 These findings echo the conclusion of SST that the PML estimators are the best

option for estimating the trade elasticity and provide a fresh perspective on the interpretation

of the estimates obtained with different methods.

Table 4
Bias decomposition

(a) Decomposition through WLS

OLS WLS PPML

Estimates
-1.347
(0.031)

-0.722
(0.049)

-0.770
(0.042)

Heterogeneous Bias
Percentage

-0.625
108.32%

0 0

Heteroskedastic Bias
Percentage

0.048
8.32%

0.048
100%

0

Total Bias -0.577 0.048 0

(b) Decomposition through GPML

OLS GPML PPML

Estimates
-1.347
(0.031)

-1.173
(0.029)

-0.770
(0.042)

Heterogeneous Bias
Percentage

-0.403
69.84%

-0.403
100%

0

Heteroskedastic Bias
Percentage

-0.174
30.16%

0 0

Total Bias -0.577 0.403 0

Note: Total bias is computed as the difference between OLS and PPML estimates. Heteroskedastic bias
is computed as the difference between WLS and PPML estimates or the difference between OLS and
GPML estimates. Heterogeneous bias is computed as the difference between OLS and WLS estimates or
the difference between GPML and PPML estimates. Details are in the main text.

5 Conclusion

In this paper, we argue that the interpretation of PPML regression, the most popular method

for estimating the gravity equation, is different from the results generated by the previously

dominant OLS regression. We show that the former can be interpreted as the elasticity of

the average and the latter as the average elasticity.

We use Monte Carlo simulations to show that when distance elasticity is systematic-

ally heterogeneous between country pairs, OLS and GPML cannot be used to estimate the

elasticity of the average, while WLS and PPML are appropriate methods.

We employ trade data and find evidence of the existence of heterogeneity across differ-

ent country pairs. Furthermore, a comparison of OLS, WLS, GPML, and PPML allows

us to decompose the difference between OLS and PPML estimates into two channels: pre-

18French (2017) performs an alternative bias decomposition between OLS and PPML, focusing on the
aggregation properties of both estimators. In this paper, we are agnostic about the source of the heterogeneity
elasticity, but if it is industrial heterogeneity, our findings are close to those in French (2017).
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viously extensively studied, heteroskedasticity bias and different interpretations of the two

estimators, which we call bias in the estimation of the elasticity of the average.

We find that while the bias associated with heteroskedasticity exists, it is 7 to 12 times

smaller and has the opposite sign compared to the previous findings; it provides a choice

between PPML and OLS another perspective: when choosing between these two estima-

tion techniques, we recommend making a decision based on the desired interpretation of the

results or providing the results obtained with both methods. As the presence of heteroske-

dasticity bias may still be a problem, to obtain the estimates of the average elasticity, we

recommend applying GPML.

While in this paper, we focused on properties of OLS, GPML, and PPML in estimating

the gravity equation, our findings are much more general: any standard log-log regression

estimated by PPML will have a different interpretation, which, depending on the research

question, may be preferable to the interpretation of a standard OLS regression.
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